ER stress-induced aggresome trafficking of HtrA1 protects against proteotoxicity

نویسندگان

  • Maximilian J. Gerhardt
  • Joseph A. Marsh
  • Margaux Morrison
  • Andrius Kazlauskas
  • Arogya Khadka
  • Stephan Rosenkranz
  • Margaret M. DeAngelis
  • Magali Saint-Geniez
  • Sarah Melissa P. Jacobo
چکیده

High temperature requirement A1 (HtrA1) belongs to an ancient protein family that is linked to various human disorders. The precise role of exon 1-encoded N-terminal domains and how these influence the biological functions of human HtrA1 remain elusive. In this study, we traced the evolutionary origins of these N-terminal domains to a single gene fusion event in the most recent common ancestor of vertebrates. We hypothesized that human HtrA1 is implicated in unfolded protein response. In highly secretory cells of the retinal pigmented epithelia, endoplasmic reticulum (ER) stress upregulated HtrA1. HtrA1 co-localized with vimentin intermediate filaments in highly arborized fashion. Upon ER stress, HtrA1 tracked along intermediate filaments, which collapsed and bundled in an aggresome at the microtubule organizing center. Gene silencing of HtrA1 altered the schedule and amplitude of adaptive signaling and concomitantly resulted in apoptosis. Restoration of wild-type HtrA1, but not its protease inactive mutant, was necessary and sufficient to protect from apoptosis. A variant of HtrA1 that harbored exon 1 substitutions displayed reduced efficacy in rescuing cells from proteotoxicity. Our results illuminate the integration of HtrA1 in the toolkit of mammalian cells against protein misfolding and the implications of defects in HtrA1 in proteostasis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Clusterin protects neurons against intracellular proteotoxicity

It is now widely accepted in the field that the normally secreted chaperone clusterin is redirected to the cytosol during endoplasmic reticulum (ER) stress, although the physiological function(s) of this physical relocation remain unknown. We have examined in this study whether or not increased expression of clusterin is able to protect neuronal cells against intracellular protein aggregation a...

متن کامل

Crosstalk between cellular compartments protects against proteotoxicity and extends lifespan

In cells living under optimal conditions, protein folding defects are usually prevented by the action of chaperones. Here, we investigate the cell-wide consequences of loss of chaperone function in cytosol, mitochondria or the endoplasmic reticulum (ER) in budding yeast. We find that the decline in chaperone activity in each compartment results in loss of respiration, demonstrating the dependen...

متن کامل

Pancreatic Cancer Cells Kinase and Induces Apoptosis via ER Stress in Human Bortezomib Inhibits PKR-Like Endoplasmic Reticulum (ER)

Bortezomib (Velcade, formerly known as PS-341) is a boronic acid dipeptide derivative that is a selective and potent inhibitor of the proteasome. We hypothesized that proteasome inhibitionwould lead to an accumulation ofmisfolded proteins in the cell resulting in endoplasmic reticulum (ER) stress. The ability of bortezomib to induce ER stress and the unfolded protein response was investigated i...

متن کامل

Bortezomib inhibits PKR-like endoplasmic reticulum (ER) kinase and induces apoptosis via ER stress in human pancreatic cancer cells.

Bortezomib (Velcade, formerly known as PS-341) is a boronic acid dipeptide derivative that is a selective and potent inhibitor of the proteasome. We hypothesized that proteasome inhibition would lead to an accumulation of misfolded proteins in the cell resulting in endoplasmic reticulum (ER) stress. The ability of bortezomib to induce ER stress and the unfolded protein response was investigated...

متن کامل

Targeting the integrated networks of aggresome formation, proteasome, and autophagy potentiates ER stress-mediated cell death in multiple myeloma cells

The inhibitory effects of macrolide antibiotics including clarithromycin (CAM) on autophagy flux have been reported. Although a macrolide antibiotic exhibits no cytotoxicity, its combination with bortezomib (BZ), a proteasome inhibitor, for the simultaneous blocking of the ubiquitin (Ub)‑proteasome and autophagy‑lysosome pathways leads to enhanced multiple myeloma (MM) cell apoptosis induction ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2017